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Abstract. Let µ(n) be the möbius function, e(x) = e2πix, x real. This paper gives the
estimate of exponential sums involving the möbius function

Sk(x, α) =
∑
n≤x

µ(n)e(nkα)

under the weak Generalized Riemann Hypothesis when k ≥ 3.

1. Introduction and statement of results

Let µ(n) be the möbius function, e(x) = e2πix, k ≥ 1 an integer, x real. The estimate
of the exponential sum

Sk(x, α) =
∑
n≤x

µ(n)e
(
nkα

)
(1.1)

was first studied by Davenport [2] in 1937 with Vinogradov’s elementary method. He
proved that for any A > 0

max
α∈[0,1]

|S1(x, α)| �A x(log x)−A. (1.2)

Here and in the sequel �A indicates that the implied constant depends at most on A.
For k ≥ 2, Hua [4] proved that

max
α∈[0,1]

|Sk(x, α)| �A x(log x)−A

holds for any A > 0.
Now we consider that the estimate of exponential sums under the following weak Gen-

eralized Riemann Hypothesis(briefly GRH), for some 0 ≤ δ < 1
2

and every Dirichlet
character χ,

L(s, χ) =
∞∑
n=1

χ(n)

ns
has no zeros in the half plane σ >

1

2
+ δ, (s = σ + it). (1.3)

For k = 1, The best result in this direction is due to Baker and Harman [1], who showed
in 1991 that for any ε > 0

max
α∈[0,1]

|S1(x, α)| �ε x
b+ε, (1.4)
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where

b =


δ + 3

4
, for 0 ≤ δ < 1

20
;

4
5
, for 1

20
≤ δ < 1

10
;

1
2
δ + 3

4
, for 1

10
≤ δ < 1

2
.

For the case k ≥ 2, Liu and Zhan [6] proved that for any k ≥ 2, ε > 0, under GRH,we
have

max
α∈[0,1]

|Sk(x, α)| �ε x
ϕk+ε,

where

ϕk = 1− 1

22k−1 .

In this paper we combine Ren [7], Kumchev [5], Wooley [10] and Zhao [11] to improve
the result of Liu and Zhan [6]. When q is small, we use analytic method to get our result.
When q is large, Kumchev, Wooley and Zhao’s results are much better. Our main result
of this paper is the following theorem.

Theorem 1. For any k ≥ 3, and ε > 0, under weak GRH, then we have

max
α∈[0,1]

|Sk(x, α)| �ε x
bk+ε,

where

bk =


1− ρk + ε, if 0 ≤ δ < 1

2
− kρk,

1− 1
2k

(1− 2δ) + ε, if 1
2
− kρk ≤ δ < 1

2
− 3ρk,

1− 1−2δ
22k−1 + ε, if 1

2
− 3ρk ≤ δ < 1

2
,

(1.5)

and

ρk =

{
1

3×2k−1 , if 3 ≤ k ≤ 7,
1

6k(k−2) , if k ≥ 8,
(1.6)

Remark 1. When 0 ≤ δ < 1
2
− kρk, the upper bound of Sk(x, α) is independent with δ.

In particular, when δ = 0, we get

max
α∈[0,1]

|Sk(x, α)| �ε x
φk+ε,

where

φk =

{
1− 1

3×2k−1 , if 3 ≤ k ≤ 7,

1− 1
6k(k−2) , if k ≥ 8,

under GRH which improves the result of Liu and Zhan [6].

Notation. Throughout the paper, the letter ε denotes a sufficiently small positive real
number, it may be different at each occurrence. For example, we may write

xεxε � xε.

Any statement in which ε occurs holds for each positive ε, and any implied constant in
such a statement is allowed to depend on ε. The letter p, with or without subscripts,
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is reserved for prime numbers. We write (a, b) = gcd(a, b), and we use m ∼ M as an
abbreviation for the condition M < m ≤ 2M .

2. Outline of the proof

Take
P1 = x1/2−δ, P2 = x1/2+δ, Q = xk+δ−1/2.

For α ∈ [0, 1], by Dirichlet’s lemma on rational approximations, we can write

α =
a

q
+ λ, with (a, q) = 1, 1 ≤ a ≤ q, 1 ≤ q ≤ Q, |λ| ≤ 1

qQ
. (2.1)

So for all α ∈ [0, 1] can be divided into three disjoint sets

E1 =

{
α;α =

a

q
+ λ, (a, q) = 1, 1 ≤ q ≤ P1, |λ| ≤

1

qQ

}
,

E2 =

{
α;α =

a

q
+ λ, (a, q) = 1, P1 < q ≤ P2, |λ| ≤

1

qQ

}
,

E3 =

{
α;α =

a

q
+ λ, (a, q) = 1, P2 < q ≤ Q, |λ| ≤ 1

qQ

}
,

For α ∈ E1, α ∈ E2, α ∈ E3, we have the following three propositions, by which we can
prove Theorem 1.

Proposition 1. Assume weak GRH and k ≥ 3. Then we have

max
α∈E1

|Sk(x, α)| � x1−
1
2k

(1−2δ)+ε. (2.2)

Proposition 2. Assume weak GRH and k ≥ 3. Then we have

max
α∈E2

|Sk(x, α)| � xc+ε, (2.3)

where

c =

{
4
5
, if 0 ≤ δ < 1

10
,

3
4

+ δ
2
, if 1

10
≤ δ < 1

2
.

Remark 2. When α ∈ E2, the upper bound of Sk(x, α) is independent with k.

Proposition 3. Assume weak GRH and k ≥ 3. Then we have

max
α∈E3

|Sk(x, α)| � xdk+ε, (2.4)

where

dk =

{
1− ρk, if 0 ≤ δ < 1

2
− 3ρk,

1− 1−2δ
22k−1 , if 1

2
− 3ρk ≤ δ < 1

2
,

and ρk is defined in (1.6).

Proof of Theorem 1. From Propositions 1, 2 and 3, we can easily get Theorem 1. �
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3. Proof of Proposition 1

We use analytic method to prove Proposition 1. To do this, we need the following
lemmas.

Lemma 1. Let k ≥ 3, α = a
q

+ λ, (a, q) = 1. Then for any ε > 0

Sk(x, α)� qηk+ε
∑
d|q

max
χq/d

∣∣∣∣ ∑
m≤x/d
(m,q)=1

µ(m)χ(m)e(mkdkλ)

∣∣∣∣,
where ηk = 1− 1

k
.

Proof. See [6, Lemma 2]. �

Lemma 2. Under weak GRH, we have

L−1(σ + it, χ)� qε(|t|+ 1)ε,

for σ ≥ 1
2

+ δ + ε and every Dirichlet character χ(mod q).

Proof. See [9, Theorem 14.2]. �

Lemma 3. Assume weak GRH, k ≥ 3 and α ∈ E1. Then we have

Sk(x, α)� qηkx1/2+δ+ε(1 + |λ|1/2xk/2), (3.1)

where ηk is defined in Lemma 1.

Proof. By Lemma 1 we know that Lemma 3 will follow if we can prove that for any ε > 0
and d|q ∑

m∼x/d
(m,q)=1

µ(m)χ(m)e(mkdkλ)� d−1/2x1/2+δ+ε(1 + |λ|1/2xk/2) (3.2)

holds uniformly for all χ = χq/d.
Let I1 denote the left-hand side of (3.2), and

F (s, χ) = Fq(s, χ) =
∞∑
m=1

(m,q)=1

µ(m)χ(m)m−s, σ > 1

H(s, χ) = Hq(s, χ) =
∏
p|q

(
1− χ(p)

ps

)−1
.

Then
F (s, χ) = L−1(s, χ)H(s, χ). (3.3)

By (3.3) we know that under weak GRH the function F (s, χ) is analytic in the region
Re(s) ≥ 1

2
+ δ + ε for any ε > 0. Furthermore,

H(s, χ)�
∏
p|q

(
1− 1
√
p

)−1
� qε, Re(s) ≥ 1

2
+ δ + ε. (3.4)
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By Perron’s summation formula we have for u ≤ x∑
m≤u

(m,q)=1

µ(m)χ(m) =
1

2πi

∫ 1+ε+iT

1+ε−iT
F (s, χ)

us

s
ds+O

(
x1+ε

T
+ log x

)
.

Take T = xk and shift the path of integration above to Re(s) = 1
2

+ δ + ε.∑
m≤u

(m,q)=1

µ(m)χ(m) =
1

2π

∫ xk

−xk
F

(
1

2
+ δ + ε+ it, χ

)
u

1
2
+δ+ε

1
2

+ δ + ε
dt+O(xε).

Then

I1 =

∫ x/d

x/(2d)

e(dkukλ)d

( ∑
m≤u

(m,q)=1

µ(m)χ(m)

)

=
1

2π

∫ xk

−xk
F

(
1

2
+ δ + ε+ it, χ

)∫ x/d

x/(2d)

u−1/2+δ+ε/2e

(
dkukλ+

t

2π
log u

)
dudt

+O(|λ|xk+ε + xε)

� d−1/2−δ
∫ xk

−xk

∣∣∣∣F(1

2
+ δ + ε+ it, χ

)∣∣∣∣
×
∣∣∣∣ ∫ xk

xk/2k
v−1+1/(2k)+δ/k+ε/(2k)e

(
vλ+

t

2kπ
log v

)
dv

∣∣∣∣dt+O(|λ|xk+ε + xε).

Since (
vλ+

t

2kπ
log v

)′
=
t+ 2kπv

2kπv
�

min
xk/2k≤v≤xk

|t+ 2kπv|

xk

−
(
vλ+

t

2kπ
log v

)′′
=

t

2kπv2
� |t|

x2k
,

by Lemma 2 and (3.4), we get

I1 � d−1/2−δx1/2+δ+ε
∫ xk

−xk

∣∣∣∣F(1

2
+ δ + ε+ it, χ

)∣∣∣∣
×min

(
1√
|t|+ 1

,
1

min
xk/2k≤v≤xk

|t+ 2kπv|

)
dt+O(|λ|xk+ε + xε)

� d−1/2−δx1/2+δ+ε
∫ xk

−xk
min

(
1√
|t|+ 1

,
1

min
xk/2k≤v≤xk

|t+ 2kπv|

)
dt

+O(|λ|xk+ε + xε).
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On noting that
|λ|xk ≤ d−1/2|λ|1/2x(k+1)/2,

it suffices now to show that∫ xk

−xk
min

(
1√
|t|+ 1

,
1

min
xk/2k≤v≤xk

|t+ 2kπv|

)
dt� (1 + |λ|1/2xk/2) log x. (3.5)

Denote by I2 the left-hand side of (3.5). If |λ| > x−k, then

I2 �
∫

|t|≤2−kπ|λ|xk

dt

|λ|xk
+

∫
4kπ|λ|xk<|t|≤xk

dt

|t|
+

∫
2−kπ|λ|xk<|t|≤4kπ|λ|xk

dt√
|t|+ 1

� log x+ |λ|1/2xk/2.

If |λ| ≤ x−k, we have that

I2 �
∫

|t|≤4kπ

1dt+

∫
4kπ<|t|≤xk

dt

|t|
� log x.

This proves (3.5), and the result follows. �

Proof of Proposition 1. Applying Lemma 3 on E1, we prove Proposition 1. �

4. Proof of Proposition 2

Ren [7] use analytic method to get a new type upper bound of exponential sums.

Lemma 4 (Ren). Fix k ≥ 1, and let βk = 1/2 + log k/ log 2. We have

Sk(x, α)� (d(q))βk(log x)c
(
x1/2

√
q(1 + |λ|xk) + x4/5 +

x√
q(1 + |λ|xk)

)
,

Proof. See [7, Theorem 1.1]. �

Remark 3. By [8], we can replace the middle term x4/5 by x3/4+ε under GRH.

Proof of Proposition 2. Applying Lemma 4 on E2, we prove Proposition 2. �

5. Proof of Proposition 3

We combine Kumchev [5] with Wooley [10], and then we get the following result.

Lemma 5. Let k ≥ 4, ρ = ρk is defined in (1.6) and suppose that α satisfies (2.1) with

Q = x
k2−2kρ
2k−1 . Then

Sk(x, α)� x1−ρ+ε +
qεxLc√

q(1 + |λ|xk)
, (5.1)

where the implied constant depends at most on k and ε.

Proof. See [5, Theorem 3] and [10, Theorem 11.1]. �
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The next result is due to Zhao [11]. When k = 3, he gives a better upper bound and
enlarge the value of Q. We also can enlarge the value of Q in Lemma 5 when k ≥ 4.

Lemma 6. Suppose that α satisfies (2.1) and x1/2 ≤ Q ≤ x5/2, then one has

S3(x, α)� x1−1/12+ε +
q−1/6x1+ε√
(1 + x3|λ|)

.

Proof. See [11, Lemma 8.5]. �

Remark 4. Following the proof of Lemma 6, we can prove that when x1/2 ≤ Q ≤ x17/6−ε,
Lemma 6 is also true. This will be used in our result.

Lemma 7. Let k ≥ 4, ρ = ρk is defined in (1.6) and suppose that α satisfies (2.1) with
x2ρ+ε ≤ Q ≤ xk−2ρ−ε. Then

Sk(x, α)� x1−ρ+ε +
qεxLc√

q(1 + |λ|xk)
, (5.2)

where the implied constant depends at most on k and ε.

Proof. For any α ∈ [0, 1], there exist b ∈ Z and r ∈ N with

(b, r) = 1, 1 ≤ r ≤ x
k2−2kρ
2k−1 and |rα− b| ≤ x−

k2−2kρ
2k−1 .

So we have

Sk(x, α)� x1−ρ+ε +
rεxLc√

r(1 + |α− b/r|xk)
. (5.3)

We assume that
r ≤ x2ρ−ε and |α− b/r| ≤ r−1x2ρ−k−ε. (5.4)

Otherwise, we have Sk(x, α)� x1−ρ+ε by (5.3). Combining (2.1) and (5.4), we have

|bq − ar| = |q(b− rα) + r(qα− a)| ≤ qr| b
r
− α|+ qr|a

q
− α|

≤ Qx2ρ−k−ε +
x2ρ−ε

Q
< 1,

provided that x2ρ+ε ≤ Q ≤ xk−2ρ−ε, hence

a = b, q = r.

We complete the proof. �

When δ is large, we can not use Lemma 6 and Lemma 7 for α ∈ E3, but we can use
the next lemma unconditionally.

Lemma 8. For k ≥ 3 and α ∈ E3 we have unconditionally that

max
α∈E3

|Sk(x, α)| � x1+ε
(

1

q
+

1

x1/2
+

q

xk

)22−2k

.

Proof. See [3, Theorem 1]. �
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Proof of Proposition 3. When 0 ≤ δ < 1
2
− 3ρk, for k = 3, applying Lemma 6 on E3, we

prove Proposition 3; for k ≥ 4, applying Lemma 7 on E3, we prove Proposition 3.
When 1

2
− 3ρk ≤ δ < 1

2
, applying Lemma 8 on E3, we prove Proposition 3. �
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