EXPONENTIAL SUMS INVOLVING THE MÖBIUS FUNCTION

XIAOGUANG HE AND BINGRONG HUANG

Abstract. Let $\mu(n)$ be the möbius function, $e(x)=e^{2 \pi i x}, x$ real. This paper gives the estimate of exponential sums involving the möbius function

$$
S_{k}(x, \alpha)=\sum_{n \leq x} \mu(n) e\left(n^{k} \alpha\right)
$$

under the weak Generalized Riemann Hypothesis when $k \geq 3$.

1. Introduction and statement of RESULTS

Let $\mu(n)$ be the möbius function, $e(x)=e^{2 \pi i x}, k \geq 1$ an integer, x real. The estimate of the exponential sum

$$
\begin{equation*}
S_{k}(x, \alpha)=\sum_{n \leq x} \mu(n) e\left(n^{k} \alpha\right) \tag{1.1}
\end{equation*}
$$

was first studied by Davenport [2] in 1937 with Vinogradov's elementary method. He proved that for any $A>0$

$$
\begin{equation*}
\max _{\alpha \in[0,1]}\left|S_{1}(x, \alpha)\right|<_{A} x(\log x)^{-A} \tag{1.2}
\end{equation*}
$$

Here and in the sequel $<_{A}$ indicates that the implied constant depends at most on A. For $k \geq 2$, Hua [4] proved that

$$
\max _{\alpha \in[0,1]}\left|S_{k}(x, \alpha)\right| \lll A x(\log x)^{-A}
$$

holds for any $A>0$.
Now we consider that the estimate of exponential sums under the following weak Generalized Riemann Hypothesis(briefly GRH), for some $0 \leq \delta<\frac{1}{2}$ and every Dirichlet character χ,

$$
\begin{equation*}
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}} \text { has no zeros in the half plane } \sigma>\frac{1}{2}+\delta,(s=\sigma+i t) \tag{1.3}
\end{equation*}
$$

For $k=1$, The best result in this direction is due to Baker and Harman [1], who showed in 1991 that for any $\varepsilon>0$

$$
\begin{equation*}
\max _{\alpha \in[0,1]}\left|S_{1}(x, \alpha)\right| \lll \varepsilon x^{b+\varepsilon} \tag{1.4}
\end{equation*}
$$

Date: April 10, 2015.
Key words and phrases. Exponential sums, möbius function, Generalized Riemann Hypothesis.
where

$$
b= \begin{cases}\delta+\frac{3}{4}, & \text { for } 0 \leq \delta<\frac{1}{20} \\ \frac{4}{5}, & \text { for } \frac{1}{20} \leq \delta<\frac{1}{10} \\ \frac{1}{2} \delta+\frac{3}{4}, & \text { for } \frac{1}{10} \leq \delta<\frac{1}{2}\end{cases}
$$

For the case $k \geq 2$, Liu and Zhan [6] proved that for any $k \geq 2, \varepsilon>0$, under GRH, we have

$$
\max _{\alpha \in[0,1]}\left|S_{k}(x, \alpha)\right|<_{\varepsilon} x^{\varphi_{k}+\varepsilon}
$$

where

$$
\varphi_{k}=1-\frac{1}{2^{2 k-1}} .
$$

In this paper we combine Ren [7], Kumchev [5], Wooley [10] and Zhao [11] to improve the result of Liu and Zhan [6]. When q is small, we use analytic method to get our result. When q is large, Kumchev, Wooley and Zhao's results are much better. Our main result of this paper is the following theorem.
Theorem 1. For any $k \geq 3$, and $\varepsilon>0$, under weak $G R H$, then we have

$$
\max _{\alpha \in[0,1]}\left|S_{k}(x, \alpha)\right|<_{\varepsilon} x^{b_{k}+\varepsilon}
$$

where

$$
b_{k}= \begin{cases}1-\rho_{k}+\varepsilon, & \text { if } 0 \leq \delta<\frac{1}{2}-k \rho_{k}, \tag{1.5}\\ 1-\frac{1}{2 k}(1-2 \delta)+\varepsilon, & \text { if } \frac{1}{2}-k \rho_{k} \leq \delta<\frac{1}{2}-3 \rho_{k}, \\ 1-\frac{1-2 \delta}{2^{2 k-1}}+\varepsilon, & \text { if } \frac{1}{2}-3 \rho_{k} \leq \delta<\frac{1}{2},\end{cases}
$$

and

$$
\rho_{k}= \begin{cases}\frac{1}{3 \times 2^{k-1}}, & \text { if } 3 \leq k \leq 7, \tag{1.6}\\ \frac{1}{6 k(k-2)}, & \text { if } k \geq 8,\end{cases}
$$

Remark 1. When $0 \leq \delta<\frac{1}{2}-k \rho_{k}$, the upper bound of $S_{k}(x, \alpha)$ is independent with δ. In particular, when $\delta=0$, we get

$$
\max _{\alpha \in[0,1]}\left|S_{k}(x, \alpha)\right|<_{\varepsilon} x^{\phi_{k}+\varepsilon}
$$

where

$$
\phi_{k}= \begin{cases}1-\frac{1}{3 \times 2^{k-1}}, & \text { if } 3 \leq k \leq 7, \\ 1-\frac{1}{6 k(k-2)}, & \text { if } k \geq 8,\end{cases}
$$

under GRH which improves the result of Liu and Zhan [6].
Notation. Throughout the paper, the letter ε denotes a sufficiently small positive real number, it may be different at each occurrence. For example, we may write

$$
x^{\varepsilon} x^{\varepsilon} \ll x^{\varepsilon} .
$$

Any statement in which ε occurs holds for each positive ε, and any implied constant in such a statement is allowed to depend on ε. The letter p, with or without subscripts,
is reserved for prime numbers. We write $(a, b)=\operatorname{gcd}(a, b)$, and we use $m \sim M$ as an abbreviation for the condition $M<m \leq 2 M$.

2. Outline of the proof

Take

$$
P_{1}=x^{1 / 2-\delta}, \quad P_{2}=x^{1 / 2+\delta}, \quad Q=x^{k+\delta-1 / 2}
$$

For $\alpha \in[0,1]$, by Dirichlet's lemma on rational approximations, we can write

$$
\begin{equation*}
\alpha=\frac{a}{q}+\lambda, \text { with }(a, q)=1,1 \leq a \leq q, 1 \leq q \leq Q,|\lambda| \leq \frac{1}{q Q} . \tag{2.1}
\end{equation*}
$$

So for all $\alpha \in[0,1]$ can be divided into three disjoint sets

$$
\begin{aligned}
& E_{1}=\left\{\alpha ; \alpha=\frac{a}{q}+\lambda,(a, q)=1,1 \leq q \leq P_{1},|\lambda| \leq \frac{1}{q Q}\right\} \\
& E_{2}=\left\{\alpha ; \alpha=\frac{a}{q}+\lambda,(a, q)=1, P_{1}<q \leq P_{2},|\lambda| \leq \frac{1}{q Q}\right\} \\
& E_{3}=\left\{\alpha ; \alpha=\frac{a}{q}+\lambda,(a, q)=1, P_{2}<q \leq Q,|\lambda| \leq \frac{1}{q Q}\right\}
\end{aligned}
$$

For $\alpha \in E_{1}, \alpha \in E_{2}, \alpha \in E_{3}$, we have the following three propositions, by which we can prove Theorem 1.

Proposition 1. Assume weak $G R H$ and $k \geq 3$. Then we have

$$
\begin{equation*}
\max _{\alpha \in E_{1}}\left|S_{k}(x, \alpha)\right| \ll x^{1-\frac{1}{2 k}(1-2 \delta)+\varepsilon} . \tag{2.2}
\end{equation*}
$$

Proposition 2. Assume weak $G R H$ and $k \geq 3$. Then we have

$$
\begin{equation*}
\max _{\alpha \in E_{2}}\left|S_{k}(x, \alpha)\right| \ll x^{c+\varepsilon} \tag{2.3}
\end{equation*}
$$

where

$$
c= \begin{cases}\frac{4}{5}, & \text { if } 0 \leq \delta<\frac{1}{10} \\ \frac{3}{4}+\frac{\delta}{2}, & \text { if } \frac{1}{10} \leq \delta<\frac{1}{2}\end{cases}
$$

Remark 2. When $\alpha \in E_{2}$, the upper bound of $S_{k}(x, \alpha)$ is independent with k.
Proposition 3. Assume weak $G R H$ and $k \geq 3$. Then we have

$$
\begin{equation*}
\max _{\alpha \in E_{3}}\left|S_{k}(x, \alpha)\right| \ll x^{d_{k}+\varepsilon} \tag{2.4}
\end{equation*}
$$

where

$$
d_{k}= \begin{cases}1-\rho_{k}, & \text { if } 0 \leq \delta<\frac{1}{2}-3 \rho_{k} \\ 1-\frac{1-2 \delta}{2^{2 k-1}}, & \text { if } \frac{1}{2}-3 \rho_{k} \leq \delta<\frac{1}{2}\end{cases}
$$

and ρ_{k} is defined in (1.6).
Proof of Theorem 1. From Propositions 1, 2 and 3, we can easily get Theorem 1.

3. Proof of Proposition 1

We use analytic method to prove Proposition 1. To do this, we need the following lemmas.

Lemma 1. Let $k \geq 3, \alpha=\frac{a}{q}+\lambda,(a, q)=1$. Then for any $\varepsilon>0$

$$
S_{k}(x, \alpha) \ll q^{\eta_{k}+\varepsilon} \sum_{d \mid q} \max _{\chi_{q / d}}\left|\sum_{\substack{m \leq x / d \\(m, q)=1}} \mu(m) \chi(m) e\left(m^{k} d^{k} \lambda\right)\right|,
$$

where $\eta_{k}=1-\frac{1}{k}$.
Proof. See [6, Lemma 2].
Lemma 2. Under weak GRH, we have

$$
L^{-1}(\sigma+i t, \chi) \ll q^{\varepsilon}(|t|+1)^{\varepsilon},
$$

for $\sigma \geq \frac{1}{2}+\delta+\varepsilon$ and every Dirichlet character $\chi(\bmod q)$.
Proof. See [9, Theorem 14.2].
Lemma 3. Assume weak GRH, $k \geq 3$ and $\alpha \in E_{1}$. Then we have

$$
\begin{equation*}
S_{k}(x, \alpha) \ll q^{\eta_{k}} x^{1 / 2+\delta+\varepsilon}\left(1+|\lambda|^{1 / 2} x^{k / 2}\right), \tag{3.1}
\end{equation*}
$$

where η_{k} is defined in Lemma 1.
Proof. By Lemma 1 we know that Lemma 3 will follow if we can prove that for any $\varepsilon>0$ and $d \mid q$

$$
\begin{equation*}
\sum_{\substack{m \sim x / d \\(m, q)=1}} \mu(m) \chi(m) e\left(m^{k} d^{k} \lambda\right) \ll d^{-1 / 2} x^{1 / 2+\delta+\varepsilon}\left(1+|\lambda|^{1 / 2} x^{k / 2}\right) \tag{3.2}
\end{equation*}
$$

holds uniformly for all $\chi=\chi_{q / d}$.
Let I_{1} denote the left-hand side of (3.2), and

$$
\begin{aligned}
& F(s, \chi)=F_{q}(s, \chi)=\sum_{\substack{m=1 \\
(m, q)=1}}^{\infty} \mu(m) \chi(m) m^{-s}, \sigma>1 \\
& H(s, \chi)=H_{q}(s, \chi)=\prod_{p \mid q}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1} .
\end{aligned}
$$

Then

$$
\begin{equation*}
F(s, \chi)=L^{-1}(s, \chi) H(s, \chi) \tag{3.3}
\end{equation*}
$$

By (3.3) we know that under weak GRH the function $F(s, \chi)$ is analytic in the region $\operatorname{Re}(s) \geq \frac{1}{2}+\delta+\varepsilon$ for any $\varepsilon>0$. Furthermore,

$$
\begin{equation*}
H(s, \chi) \ll \prod_{p \mid q}\left(1-\frac{1}{\sqrt{p}}\right)^{-1} \ll q^{\varepsilon}, \quad \operatorname{Re}(s) \geq \frac{1}{2}+\delta+\varepsilon \tag{3.4}
\end{equation*}
$$

By Perron's summation formula we have for $u \leq x$

$$
\sum_{\substack{m \leq u \\(m, \bar{q})=1}} \mu(m) \chi(m)=\frac{1}{2 \pi i} \int_{1+\varepsilon-i T}^{1+\varepsilon+i T} F(s, \chi) \frac{u^{s}}{s} d s+O\left(\frac{x^{1+\varepsilon}}{T}+\log x\right)
$$

Take $T=x^{k}$ and shift the path of integration above to $\operatorname{Re}(s)=\frac{1}{2}+\delta+\varepsilon$.

$$
\sum_{\substack{m \leq u \\(m, q)=1}} \mu(m) \chi(m)=\frac{1}{2 \pi} \int_{-x^{k}}^{x^{k}} F\left(\frac{1}{2}+\delta+\varepsilon+i t, \chi\right) \frac{u^{\frac{1}{2}+\delta+\varepsilon}}{\frac{1}{2}+\delta+\varepsilon} d t+O\left(x^{\varepsilon}\right)
$$

Then

$$
\begin{aligned}
I_{1}= & \int_{x /(2 d)}^{x / d} e\left(d^{k} u^{k} \lambda\right) d\left(\sum_{\substack{m \leq u \\
(m, q)=1}} \mu(m) \chi(m)\right) \\
= & \frac{1}{2 \pi} \int_{-x^{k}}^{x^{k}} F\left(\frac{1}{2}+\delta+\varepsilon+i t, \chi\right) \int_{x /(2 d)}^{x / d} u^{-1 / 2+\delta+\varepsilon / 2} e\left(d^{k} u^{k} \lambda+\frac{t}{2 \pi} \log u\right) d u d t \\
& +O\left(|\lambda| x^{k+\varepsilon}+x^{\varepsilon}\right) \\
\ll & d^{-1 / 2-\delta} \int_{-x^{k}}^{x^{k}}\left|F\left(\frac{1}{2}+\delta+\varepsilon+i t, \chi\right)\right| \\
& \times\left|\int_{x^{k} / 2^{k}}^{x^{k}} v^{-1+1 /(2 k)+\delta / k+\varepsilon /(2 k)} e\left(v \lambda+\frac{t}{2 k \pi} \log v\right) d v\right| d t+O\left(|\lambda| x^{k+\varepsilon}+x^{\varepsilon}\right) .
\end{aligned}
$$

Since

$$
\begin{gathered}
\left(v \lambda+\frac{t}{2 k \pi} \log v\right)^{\prime}=\frac{t+2 k \pi v}{2 k \pi v} \gg \frac{\min _{x^{k} / 2^{k} \leq v \leq x^{k}}|t+2 k \pi v|}{x^{k}} \\
-\left(v \lambda+\frac{t}{2 k \pi} \log v\right)^{\prime \prime}=\frac{t}{2 k \pi v^{2}} \gg \frac{|t|}{x^{2 k}},
\end{gathered}
$$

by Lemma 2 and (3.4), we get

$$
\begin{aligned}
I_{1} & \ll d^{-1 / 2-\delta} x^{1 / 2+\delta+\varepsilon} \int_{-x^{k}}^{x^{k}}\left|F\left(\frac{1}{2}+\delta+\varepsilon+i t, \chi\right)\right| \\
& \times \min \left(\frac{1}{\sqrt{|t|+1}}, \frac{1}{\min _{x^{k} / 2^{k} \leq v \leq x^{k}}|t+2 k \pi v|}\right) d t+O\left(|\lambda| x^{k+\varepsilon}+x^{\varepsilon}\right) \\
& \ll d^{-1 / 2-\delta} x^{1 / 2+\delta+\varepsilon} \int_{-x^{k}}^{x^{k}} \min \left(\frac{1}{\sqrt{|t|+1}}, \frac{1}{\min _{x^{k} / 2^{k} \leq v \leq x^{k}}|t+2 k \pi v|}\right) d t \\
& +O\left(|\lambda| x^{k+\varepsilon}+x^{\varepsilon}\right) .
\end{aligned}
$$

On noting that

$$
|\lambda| x^{k} \leq d^{-1 / 2}|\lambda|^{1 / 2} x^{(k+1) / 2}
$$

it suffices now to show that

$$
\begin{equation*}
\int_{-x^{k}}^{x^{k}} \min \left(\frac{1}{\sqrt{|t|+1}}, \frac{1}{\min _{x^{k} / 2^{k} \leq v \leq x^{k}}|t+2 k \pi v|}\right) d t \ll\left(1+|\lambda|^{1 / 2} x^{k / 2}\right) \log x \tag{3.5}
\end{equation*}
$$

Denote by I_{2} the left-hand side of (3.5). If $|\lambda|>x^{-k}$, then

$$
\begin{aligned}
I_{2} & \ll \int_{|t| \leq 2^{-k} \pi|\lambda| x^{k}} \frac{d t}{|\lambda| x^{k}}+\int_{4 k \pi|\lambda| x^{k}<|t| \leq x^{k}} \frac{d t}{|t|}+\int_{2^{-k} \pi|\lambda| x^{k}<|t| \leq 4 k \pi|\lambda| x^{k}} \frac{d t}{\sqrt{|t|+1}} \\
& \ll \log x+|\lambda|^{1 / 2} x^{k / 2} .
\end{aligned}
$$

If $|\lambda| \leq x^{-k}$, we have that

$$
I_{2} \ll \int_{|t| \leq 4 k \pi} 1 d t+\int_{4 k \pi<|t| \leq x^{k}} \frac{d t}{|t|} \ll \log x .
$$

This proves (3.5), and the result follows.
Proof of Proposition 1. Applying Lemma 3 on E_{1}, we prove Proposition 1.

4. Proof of Proposition 2

Ren [7] use analytic method to get a new type upper bound of exponential sums.
Lemma 4 (Ren). Fix $k \geq 1$, and let $\beta_{k}=1 / 2+\log k / \log 2$. We have

$$
S_{k}(x, \alpha) \ll(d(q))^{\beta_{k}}(\log x)^{c}\left(x^{1 / 2} \sqrt{q\left(1+|\lambda| x^{k}\right)}+x^{4 / 5}+\frac{x}{\sqrt{q\left(1+|\lambda| x^{k}\right)}}\right)
$$

Proof. See [7, Theorem 1.1].
Remark 3. By [8], we can replace the middle term $x^{4 / 5}$ by $x^{3 / 4+\varepsilon}$ under GRH.
Proof of Proposition 2. Applying Lemma 4 on E_{2}, we prove Proposition 2.

5. Proof of Proposition 3

We combine Kumchev [5] with Wooley [10], and then we get the following result.
Lemma 5. Let $k \geq 4, \rho=\rho_{k}$ is defined in (1.6) and suppose that α satisfies (2.1) with $Q=x^{\frac{k^{2}-2 k \rho}{2 k-1}}$. Then

$$
\begin{equation*}
S_{k}(x, \alpha) \ll x^{1-\rho+\varepsilon}+\frac{q^{\varepsilon} x L^{c}}{\sqrt{q\left(1+|\lambda| x^{k}\right)}}, \tag{5.1}
\end{equation*}
$$

where the implied constant depends at most on k and ε.
Proof. See [5, Theorem 3] and [10, Theorem 11.1].

The next result is due to Zhao [11]. When $k=3$, he gives a better upper bound and enlarge the value of Q. We also can enlarge the value of Q in Lemma 5 when $k \geq 4$.
Lemma 6. Suppose that α satisfies (2.1) and $x^{1 / 2} \leq Q \leq x^{5 / 2}$, then one has

$$
S_{3}(x, \alpha) \ll x^{1-1 / 12+\varepsilon}+\frac{q^{-1 / 6} x^{1+\varepsilon}}{\sqrt{\left(1+x^{3}|\lambda|\right)}}
$$

Proof. See [11, Lemma 8.5].
Remark 4. Following the proof of Lemma 6, we can prove that when $x^{1 / 2} \leq Q \leq x^{17 / 6-\varepsilon}$, Lemma 6 is also true. This will be used in our result.

Lemma 7. Let $k \geq 4, \rho=\rho_{k}$ is defined in (1.6) and suppose that α satisfies (2.1) with $x^{2 \rho+\varepsilon} \leq Q \leq x^{k-2 \rho-\varepsilon}$. Then

$$
\begin{equation*}
S_{k}(x, \alpha) \ll x^{1-\rho+\varepsilon}+\frac{q^{\varepsilon} x L^{c}}{\sqrt{q\left(1+|\lambda| x^{k}\right)}}, \tag{5.2}
\end{equation*}
$$

where the implied constant depends at most on k and ε.
Proof. For any $\alpha \in[0,1]$, there exist $b \in \mathbb{Z}$ and $r \in \mathbb{N}$ with

$$
(b, r)=1,1 \leq r \leq x^{\frac{k^{2}-2 k \rho}{2 k-1}} \text { and }|r \alpha-b| \leq x^{-\frac{k^{2}-2 k \rho}{2 k-1}} .
$$

So we have

$$
\begin{equation*}
S_{k}(x, \alpha) \ll x^{1-\rho+\varepsilon}+\frac{r^{\varepsilon} x L^{c}}{\sqrt{r\left(1+|\alpha-b / r| x^{k}\right)}} \tag{5.3}
\end{equation*}
$$

We assume that

$$
\begin{equation*}
r \leq x^{2 \rho-\varepsilon} \text { and }|\alpha-b / r| \leq r^{-1} x^{2 \rho-k-\varepsilon} . \tag{5.4}
\end{equation*}
$$

Otherwise, we have $S_{k}(x, \alpha) \ll x^{1-\rho+\varepsilon}$ by (5.3). Combining (2.1) and (5.4), we have

$$
\begin{aligned}
|b q-a r| & =|q(b-r \alpha)+r(q \alpha-a)| \leq q r\left|\frac{b}{r}-\alpha\right|+q r\left|\frac{a}{q}-\alpha\right| \\
& \leq Q x^{2 \rho-k-\varepsilon}+\frac{x^{2 \rho-\varepsilon}}{Q}<1,
\end{aligned}
$$

provided that $x^{2 \rho+\varepsilon} \leq Q \leq x^{k-2 \rho-\varepsilon}$, hence

$$
a=b, q=r
$$

We complete the proof.
When δ is large, we can not use Lemma 6 and Lemma 7 for $\alpha \in E_{3}$, but we can use the next lemma unconditionally.

Lemma 8. For $k \geq 3$ and $\alpha \in E_{3}$ we have unconditionally that

$$
\max _{\alpha \in E_{3}}\left|S_{k}(x, \alpha)\right| \ll x^{1+\varepsilon}\left(\frac{1}{q}+\frac{1}{x^{1 / 2}}+\frac{q}{x^{k}}\right)^{2^{2-2 k}}
$$

Proof. See [3, Theorem 1].

Proof of Proposition 3. When $0 \leq \delta<\frac{1}{2}-3 \rho_{k}$, for $k=3$, applying Lemma 6 on E_{3}, we prove Proposition 3; for $k \geq 4$, applying Lemma 7 on E_{3}, we prove Proposition 3 .

When $\frac{1}{2}-3 \rho_{k} \leq \delta<\frac{1}{2}$, applying Lemma 8 on E_{3}, we prove Proposition 3.
Acknowledgements: The authors would like to thank Professor Jianya Liu for his valuable advice and constant encouragement.

References

[1] R. C. Baker. and G. Harman. Exponential sums formed with the Mobius function. J. London Math. Sot. (2) 43,193-198, (1991).
[2] H. Davenport. On some infinite series involving arithmetical functions (II). Quart. J. Math. 8,313320, (1937).
[3] G. Harman. Trigonometric sums over primes (I). Mathematika 28,249-254, (1981).
[4] L. K. Hua. Additive theory of prime numbers. American Mathematical Soc. 1965.
[5] A. V. Kumchev. On Weyl sums over primes and almost primes, Michigan Math. J. 54, 243-268, (2006).
[6] J. Y. Liu and T. Zhan. Exponential sums involving the Möbius function. Indag. Math. (N.S.),7(2):271-278, (1996).
[7] X. M. Ren. On exponential sums over primes and application in the Waring-Goldbach problem, Sci. China Ser. A 48, 785-797, (2005).
[8] X. M. Ren. Vinogradovs exponential sum over primes. Acta Arith. 124, 269-285, (2006).
[9] E. C. Titchmarsh. The theory of the Riemann zeta-function, 2nd edition, revised by D.R HeathBrown. University Press, Oxford (1986).
[10] T. D. Wooley. Vinogradovs mean value theorem via efficient congruencing, II. Duke Math. J. 162, 673-730 (2013)
[11] L. L. Zhao. On the Waring-Goldbach problem for fourth and sixth powers, Proc. Lond. Math. Soc. (3) 108, no. 6, 1593-1622, (2014).

School of Mathematics, Shandong University, Jinan, Shandong 250100, China
E-mail address: hexiaoguangsdu@gmail.com
E-mail address: bingronghuangsdu@gmail.com

