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Abstract. Let Λ(n) be the von Mangoldt function, x real and 2 ≤ y ≤ x. This paper
improves the estimate on the exponential sum over primes in short intervals

Sk(x, y;α) =
∑

x<n≤x+y

Λ(n)e
(
nkα

)
when k ≥ 4 for all α ∈ [0, 1]. And then combined with the Hardy-Littlewood method,
this enables us to give some short interval variants of Hua’s theorems in additive prime
number theory.

1. Introduction and statement of results

Let Λ(n) be the von Mangoldt function, k ≥ 1 an integer, x real and 2 ≤ y ≤ x. The
estimate of the exponential sum over primes in short intervals

Sk(x, y;α) =
∑

x<n≤x+y

Λ(n)e
(
nkα

)
(1.1)

was first studied by I. M. Vinogradov [11] in 1939 with his elementary method. Since
then this topic has attracted the interest of quite a number of authors (see [1, 5, 6, 7, 8,
9, 10, 12] etc.). These sums arise naturally and play important roles when solving the
Waring-Goldbach problems in short intervals by the circle method. In particular, the case
k = 1, i.e., the linear exponential sum over primes in short intervals, was studied quite
extensively, because of its applications to the study of the Goldbach-Vinogradov theorem
with three almost equal prime variables (see [12] and the references therein).

For the case k = 2, Liu and Zhan [7] first established a non-trivial estimate of S2(x, y;α)
for all α and all published results before their result are valid only for α in a very thin
subset of [0, 1]. In [8], Lü and Lao improved the results in [7] to be as good as what was
previously derived from the Generalized Riemann Hypothesis.

In this paper we deal with Sk(x, y;α) for all α ∈ [0, 1] in the general case k ≥ 3. In
[6], Liu and Zhan first established a non-trivial estimate of Sk(x, y;α) for all α ∈ R and
k ≥ 3. To state Liu and Zhan’s result, we introduce some notation. Let A > 0 be any
given large constant, ε > 0 sufficiently small. We further put

L = log x, P = Lc1 , P = xk%, Q =
y2k−1

xk−1
L−c3 , R = yxk−1L−c2 , (1.2)

Date: November 19, 2014.
Key words and phrases. Exponential sums, von Mangoldt function, short intervals.

1



such that
2 ≤ 2P < 2P < Q ≤ R ≤ xk, (1.3)

where % is a positive parameter depending on k which will be specified later and ci denote
positive constants that depend at most on the positive numbers A, k and ε. By Dirichlet’s
lemma on rational approximation, any α ∈ [0, 1] can be written as

α =
a

q
+ λ, with (a, q) = 1, 1 ≤ a ≤ q ≤ Q, |λ| ≤ 1

qQ
. (1.4)

Then every α ∈ [0, 1] given in the form of (1.4) satisfies one of the following three condi-
tions:

(a) q ≤ P, |λ| ≤ 1

R
;

(b) P < q ≤ Q, |λ| ≤ 1

qQ
;

(c) q ≤ P,
1

R
< |λ| ≤ 1

qQ
.

Denote by A, B and C the three subsets of α satisfying (a), (b) and (c) respectively. Then
[0, 1] is the disjoint union of A, B and C. The main result in [6] is the following

Theorem 0 (Liu-Zhan). Let k ≥ 3, and K = 2k−1. Then for any A > 0, there exist
c1, c2 > 0, such that the estimate

Sk(x, y;α) =

{
Mk(x, y;α) +O(yL−A), if q ≤ P, |λ| ≤ 1

R
;

O(yL−A), otherwise,

holds for
xϕ+ε ≤ y ≤ x,

where

ϕ = ϕk =

{
1− 1

K+1
, if 3 ≤ k ≤ 5;

1− 2
k2+3k+4

, if k ≥ 6,

and Mk(x, y;α) is the main term, which can be expressed as

Mk(x, y;α) =
1

ϕ(q)

q∑
h=1

(h,q)=1

e

(
ahk

q

)∫ x+y

x

e(λuk)du.

Another result for the case k ≥ 3 is given by Kumchev in [4]. His result is much better
when q is large, but is not non-trivial for all α ∈ [0, 1] (See [4, Theorem 1]). Hence in
this paper we will combine the method used by Liu and Zhan with the method used by
Kumchev to improve Theorem 0. Our main results of this paper are the following two
theorems.

Theorem 1. Let k ≥ 3. Then for any A > 0, there exist c1, c2 > 0, such that the estimate

Sk(x, y;α) =

{
Mk(x, y;α) +O(yL−A), if q ≤ P, |λ| ≤ 1

R
;

O(yL−A), otherwise,
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holds for

xϑ+ε ≤ y ≤ x,

where

ϑ = ϑk =

{
4
5
, if k = 3;

1− 1
2k
, if k ≥ 4,

The estimate given in Theorem 1, when combined with the Hardy-Littlewood method
as in [6], enables us to give some short interval variants of Hua’s theorems in additive
prime number theory [3].

Theorem 2. Let k ≥ 3, K = 2k−1, and

ς = ςk = min

{
1− 1

k(K + 1)
, 1− 1

2k2

}
. (1.5)

Denote by R3(N,U) the number of solutions of the equation{
N = p1 + p2 + pk3,
|p1 − N

3
| ≤ U, |p2 − N

3
| ≤ U, |pk3 − N

3
| ≤ U.

Then for U = N ς+ε, we have

R3(N,U) = 32−1/kC3(N)
U2

N1−1/k log3N

(
1 +O

(
1

logN

))
,

where

C3(N) =
∞∑
q=1

µ2(q)

ϕ3(q)

q∑
a=1

(a,q)=1

e

(
−aN

q

) q∑
h=1

(h,q)=1

e

(
ahk

q

)
,

and C3(N) > c > 0 for odd N .

Similarly, an almost-all result on the sum of a prime and a k-th power of a prime in
short intervals can also be obtained.

Remark 1. The method in proving Theorem 1 can also be applied to establish a short
interval estimate for exponential sums involving the Möbius function µ(n).

Notation. Throughout the paper, the letter ε denotes a sufficiently small positive real
number, while c without subscript stands for an absolute positive constant; both of them
may be different at each occurrence. For example, we may write

LcLc � Lc, xε � yε.

Any statement in which ε occurs holds for each positive ε, and any implied constant in
such a statement is allowed to depend on ε. The letter p, with or without subscripts,
is reserved for prime numbers. We write (a, b) = gcd(a, b), and we use m ∼ M as an
abbreviation for the condition M < m ≤ 2M .
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2. Reduction of Theorem 1

For α ∈ A, the major arcs in the circle method, we need to show that

Sk(x, y;α) = Mk(x, y;α) +O(yL−A). (2.1)

Just as the treatment in [6], this can be easily established by the partial integration and
the Siegel-Walfisz theorem in short intervals∑

x<n≤x+y

Λ(n)χ(n) = δχy +O(yL−A) (2.2)

for x
7
12

+ε ≤ y ≤ x and any character χ modulo q ≤ LC , where δχ = 1 if χ is principal and
δχ = 0 otherwise, C > 0 is any constant.

Hence for the proof of Theorem 1 reduces to show that

Sk(x, y;α)� yL−A, α ∈ B ∪ C, (2.3)

with suitable choice of constants ci (i = 1, 2, 3) in (1.2).

For α ∈ B, in order to improve the result, we further divide the set B into two subsets

B1 =

{
α ∈ [0, 1]

∣∣∣∣ α =
a

q
+ λ, (a, q) = 1, P < q < P , |λ| ≤ 1

qQ

}
(2.4)

and

B2 =

{
α ∈ [0, 1]

∣∣∣∣ α =
a

q
+ λ, (a, q) = 1, P ≤ q ≤ Q, |λ| ≤ 1

qQ

}
(2.5)

where % = %k is a small parameter satisfying some conditions which will be given later.
Then we estimate α ∈ B1 and α ∈ B2 separately.

For α ∈ B1, we establish the following proposition

Proposition 1. Let k ≥ 3 and % < k−1
2k2

. Then there exist c1, c3 > 0, such that

Sk(x, y;α)� yL−A

holds for α ∈ B1 and

xβ+ε ≤ y ≤ x, with β = βk = 1− 1

2k
. (2.6)

For α ∈ B2, our result is

Proposition 2. Let k ≥ 4, % < 1
k3

and c1, c3 be fixed according to the discussion above.
Then the estimate

Sk(x, y;α)� yL−A

holds for α ∈ B2 and

xγ+ε ≤ y ≤ xω, with γ = γk = 1− 1

2k − 1
, ω = ωk = 1− 1

k3
. (2.7)
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Remark 2. Actually the precise choice of ω is unimportant and we just need ϕk < ωk < 1.
The estimate can be improved to be the form of y1−ρ+ε if we use the method in [4] to give
the estimate for exponential sums of Type II instead of Lemma 6 below. But since it has
no influence on our main result, we will not do it.

In proving the above propositions, we estimate the exponential sums of type I and type
II respectively. At first we will give the estimate of the exponential sums of type II∑

m∼M

∑
n∼N

x<mn≤x+y

a(m)b(n)e
(
(mn)kα

)
(2.8)

for all α ∈ B which is Proposition A in [6], where a(m), b(n) are any real numbers
satisfying that a(m) � τ`(m)L, b(n) � τ`(n)L and τ`(n) is the number of ordered
factorizations of n as the product of exactly ` positive integers. Then for the exponential
sums of type I ∑

m∼M

a(m)
∑
n∼N

x<mn≤x+y

e
(
(mn)kα

)
, (2.9)

when α ∈ B1, we apply van der Corput’s method to handle them and a theorem of Hua
to concern complete exponential sums as [6] does; when α ∈ B2, we employ the method
used by Kumchev in [4] to deal with them. At last we can deduce the results by appealing
to the Heath-Brown’s identity.

For α ∈ C, we have the following result

Proposition 3. Let k ≥ 3, and c1, c3 be fixed according to the discussion above. Then
there exists c2 > 0 such that the estimate

Sk(x, y;α)� yL−A

holds for α ∈ C and

xη+ε ≤ y ≤ x, η = ηk = 1− 1

2k − 1
. (2.10)

Proof. See [6, Theorem 6]. �

We conclude from Propositions 1, 2 and 3 that

Corollary 1. The estimate (2.3) holds subject to the condition xβ+ε ≤ y ≤ xω.

It is easily seen that Theorem 1 follows form Theorem 0 and Corollary 1.

In Section 3 we shall give some lemmas which will be used later. In Section 4 and 5 we
shall give the proof of Proposition 1 and 2 respectively.

5



3. Lemmas

Lemma 1 (van der Corput). Let f(x) be a real differentiable function on [a, b], f ′(x) be
monotonic and |f ′(x)| ≤ δ, 0 < δ < 1. Then∑

a<n≤b

e(f(n)) =

∫ b

a

e(f(x))dx+O

(
1

1− δ

)
.

Proof. See [6, Lemma 6.4]. �

Lemma 2 (Hua). Let f(x) = a1x + · · · + akx
k be a polynomial with integer coefficients,

and (a1, . . . , ak, q) = d. Then ∑
1≤n≤q

e

(
f(n)

q

)
�k,ε q

1− 1
k
+εd

1
k .

Proof. See [3, Theorem 2]. �

Lemma 3 (Heath-Brown). Let z ≥ 1 and J ≥ 1. Then for any n ≤ 2zJ , we have

Λ(n) =
J∑
j=1

(−1)j−1
(
J

j

)∑
· · ·
∑

n1n2···n2j=n
nj+1,...,n2j≤z

(log n1)µ(nj+1) · · ·µ(n2j). (3.1)

Proof. See [2, Section 2]. �

Lemma 4. Let k ≥ 3, we define the multiplicative function wk(q) by

wk
(
pku+v

)
=

{
kp−u−1/2, if u ≥ 0, v = 1,
p−u−1, if u ≥ 0, v = 2, . . . , k.

Then we have ∑
n∼N

wk

(
q

(q, nj)

)
� qεwk(q)N (1 ≤ j ≤ k). (3.2)

Proof. See [4, Lemma 2.1]. �

Lemma 5 (Kumchev). Let k ≥ 3 ba an integer and let 0 < ρ ≤ σk, where σk =

max
{

1
K
, 1
2k(k−2)

}
. Suppose that y ≤ x, xk ≤ yk+1−2ρ. Then either∑

x<n≤x+y

e
(
nkα

)
� y1−ρ+ε, (3.3)

or there exist integers a and q such that

1 ≤ q ≤ ykρ, (a, q) = 1, |qα− a| ≤ x1−kykρ−1, (3.4)

and ∑
x<n≤x+y

e
(
nkα

)
� wk(q)y

1 + yxk−1|α− a/q|
+ xk/2+εy(1−k)/2. (3.5)

Proof. See [4, Lemma 2.2]. �
6



4. The case α ∈ B1
The aim of this section is to give the proof of Proposition 1. At first, we give the

following estimate of the exponential sums of type II which will be used for all the cases
when α ∈ B.

Lemma 6. Let M,N ≥ 1, x�MN � x and define

T2 =
∑
m∼M

∑
n∼N

x<mn≤x+y

a(m)b(n)e
(
(mn)kα

)
.

Then we have

T2 � yL−A (4.1)

holds for

xy−1Lc4 ≤M ≤ yL−c4 , Lc5 ≤ q ≤ y2k−1x1−kL−c5 , (4.2)

where cj = cj(A) > 0, j = 4, 5.

Proof. See [6, Propostion A]. �

For α ∈ B1, we need the following lemma to treat the exponential sums of type I. The
proof is similar to [6, Propostion C].

Lemma 7. Let M,N ≥ 1, x�MN � x and define

T1 =
∑
m∼M

a(m)
∑
n∼N

x<mn≤x+y

e
(
(mn)kα

)
.

Then we have

T1 � yL−A (4.3)

holds for

M � min

{
Q

xk−1L
,
y

P
L−c6

}
, Lc1 < q ≤ P , (4.4)

with c1, c6 sufficiently large.

Proof. We begin with the estimation of the inner sum

Sm =
∑

X<n≤X+Y

e
(
mknkα

)
, (4.5)

where X, Y satisfy that

X = max
{ x
m
,N
}
� x

M
,

Y = min

{
x+ y

m
, 2N

}
−max

{ x
m
,N
}
� y

M
7



with m ∼M . It is easy to see that

Sm =
∑
v≤q

∑
X<qu+v≤X+Y

e
(
mk(qu+ v)kα

)
=

∑
v≤q

e

(
amkvk

q

) ∑
X<qu+v≤X+Y

e
(
mk(qu+ v)kλ

)
. (4.6)

Since M � Q
xk−1L

, we have

d

du
(mk(qu+ v)kλ) = kmk(qu+ v)k−1qλ� MkXk−1

Q
� Mxk−1

Q
<

1

2
.

We can thus apply Lemma 1, which ensures that the inner sum on the right hand side of
(4.6) is

=

∫ X+Y−v
q

X−v
q

e
(
mk(qu+ v)kλ

)
du+O(1)

=
Y

q

∫ X+Y
Y

X
Y

e
(
mk(Y u)kλ

)
du+O(1).

Hence (4.6) becomes

Sm =
Y

q

∫ X+Y
Y

X
Y

e
(
mk(Y u)kλ

)
du
∑
v≤q

e

(
amkvk

q

)
+O(q).

From this and Lemma 2, we conclude that

T1 �
∑
m∼M

|a(m)||Sm|

� y

Mq

∑
m∼M

τ`(m)L

∣∣∣∣∣∑
v≤q

e

(
amkvk

q

)∣∣∣∣∣+ qMLc

� yM−1q−
1
k
+ε
∑
m∼M

τ`(m)(mk, q)
1
k + qMLc.

Since ∑
m∼M

τ`(m)(mk, q)
1
k ≤

∑
m∼M

τ`(m)(m, q) ≤
∑
d|q

d≤2M

∑
m∼M
d|m

τ`(m)d

�
∑
d|q

dτ`(d)
M

d
Lc �MLcτ`(q)τ(q),

we have
T1 � yq−

1
k
+ε + qMLc,

which gives the desired result on taking c1, c6 sufficiently large. �
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Remark 3. Let

T ∗1 =
∑
m∼M

a(m)
∑
n∼N

x<mn≤x+y

e
(
(mn)kα

)
log n. (4.7)

Under the condition of Lemma 7 we have

T ∗1 � yL−A.

Utilizing Lemma 6 and Lemma 7, we now establish Proposition 1 via Heath-Brown’s
identity.

Proof of Proposition 1. Applying the Heath-Brown identity we obtain that the expo-
nential sum Sk(x, y;α) can be written as O(Lc) linear combinations of

Σ =
∑
n1∼N1

· · ·
∑

n2J∼N2J

x<n1···n2J≤x+y

a1(n1) · · · a2J(n2J)e
(
(n1 · · ·n2J)kα

)
where

a1(n1) = log n; aj(n) = 1, 2 ≤ j ≤ J ; aj(n) = µ(n), J + 1 ≤ j ≤ 2J

and

x� N1 · · ·N2J � x; Nj ≥
1

2
, 1 ≤ j ≤ 2J ; Nj � 2x

1
J , J + 1 ≤ j ≤ 2J.

To prove Proposition 1, we take J = 2k and % < k−1
2k2

. Then we have

x
1
J < min

{
Q

xk−1L
,
y

P
L−c6

}
.

The analysis involves several cases depending on the sizes of N1, . . . , N2J .

Case 1: If there exists 1 ≤ j ≤ 2J such that Nj > x
J−1
J , then it follows that

1 ≤ j ≤ J . In this case Σ can be written in the form of T1 in Lemma 7 or T ∗1 in

(4.7) with M =
∏

i 6=j Ni ≤ x
1
J satisfying (4.4). Hence Proposition 1 is true.

Case 2: If there exists 1 ≤ j ≤ 2J satisfying 2x
1
J < Nj ≤ x

J−1
J , we also have

1 ≤ j ≤ J . In this case Σ can be written as T2 in Lemma 6 with M = Nj

satisfying (4.2). Proposition 1 then follows in this case.

Case 3: It remains to consider the case Nj ≤ 2x
1
J for all 1 ≤ j ≤ 2J . Take the

smallest i such that

N1 · · ·Ni > 2x
1
J .

Since N1 ≤ 2x
1
J , we have i ≥ 2 and

N1 · · ·Ni = (N1 · · ·Ni−1)Ni < 2x
1
J 2x

1
J = 4x

2
J .

Let M = N1 · · ·Ni. Then M satisfies the condition of Lemma 6. This completes
the proof of Proposition 1.

�
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5. The case α ∈ B2
In this section, we will use the method in [4] to prove Proposition 2. At first, we will

establish the following lemma which will be used to deal with the exponential sums of
type I with α ∈ B2.

Lemma 8. Let k ≥ 3, 0 < ρ < σk/2 and ρ < 1
k3

. Let M,N ≥ 1, x�MN � x. Suppose
that α is real that there exist integers a and q such that (1.4) holds with Q given by (1.2).
Let a(m) ≤ τ`(m)L, and define

T1 =
∑
m∼M

a(m)
∑
n∼N

x<mn≤x+y

e
(
(mn)kα

)
.

Then

T1 � y1−ρ+ε +
wk(q)yx

ε

1 + yxk−1|α− a/q|
,

provided that

M � min
{
y

(1−ρ)(k+1−2ρ)
1−2ρ x

−k
1−2ρ , yk+1−2ρx−k, x

1− k+1
k

ρ
σk

}
, M2k � xk−2kρ−

1−2ρ
k+1−2ρ , (5.1)

and
xγ+ε ≤ y ≤ xω, (5.2)

with

γ = γk = 1− 1

2k − 1
, and ω = ωk = 1− 1

k3
. (5.3)

Proof. Set

Sm =
∑

X<n≤X+Y

e
(
mknkα

)
,

where X, Y satisfy that

X = max
{ x
m
,N
}
� x

M
,

Y = min

{
x+ y

m
, 2N

}
−max

{ x
m
,N
}
� y

M

with m ∼M . Denote M0 to be the set of m, with m ∼M , for which satisfy that

Y k+1−2ρ ≥ Xk.

So, by (5.1) and (5.2), we have

T1 � MLcX
k

k+1−2ρ +
∑
m∈M0

a(m)
∑
n∼N

x<mn≤x+y

e
(
(mn)kα

)
� y1−ρ+ε +

∑
m∈M0

a(m)Sm.

Define ν by Y ν = xρL−1 for any fixed m ∈M0. Note that, by (5.1), we have

ν < σk.
10



We denote by M the set of integers m ∈ M0, for which there exist integers b1 and r1
with

1 ≤ r1 ≤ Y kν , (b1, r1) = 1, |r1mkα− b1| ≤ X1−kY kν−1. (5.4)

We apply Lemma 5 to the summation over n and get

Sm � Y 1−ν+ε +
wk(r1)Y

1 + Y Xk−1|mkα− b1/r1|
+Xk/2+εY (1−k)/2,

for m ∈M. So

T1 � y1−ρ+ε +
∑
m∼M

Y 1−ν+ε

+
∑
m∈M

a(m)

(
wk(r1)Y

1 + Y Xk−1|mkα− b1/r1|
+Xk/2+εY (1−k)/2

)
.

Then by (5.1) we have
T1 � y1−ρ+ε + T1(α),

where

T1(α) =
∑
m∈M

a(m)wk(r1)Y

1 + Y Xk−1|mkα− b1/r1|
.

We apply Dirichlet’s theorem on Diophantine approximation to find integers b and r with

1 ≤ r ≤ x−kρY Xk−1, (b, r) = 1, |rα− b| ≤ xkρY −1X1−k. (5.5)

By (5.1), (5.4) and (5.5), we have

|b1r − bmkr1| = |r(b1 − r1mkα) + r1m
k(rα− b)|

≤ x−kρY Xk−1X1−kY kν−1 + Y kν(2M)kxkρY −1X1−k

� L−k +M2k− 1−2ρ
k+1−2ρL−kx2kρ−k+

1−2ρ
k+1−2ρ

� L−k < 1,

whence
b1
r1

=
mkb

r
, r1 =

r

(r,mk)
.

Thus, by Lemma 4, we have

T1(α) ≤
∑
m∈M

a(m)wk

(
r

(r,mk)

)
Y

1 + Y Xk−1mk|α− b/r|

� yM−1+ε

1 + yxk−1|α− b/r|
∑
m∼M

wk

(
r

(r,mk)

)
� yM−1+ε

1 + yxk−1|α− b/r|
rεwk(r)M

� wk(r)yx
ε

1 + yxk−1|α− b/r|
.
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Recall that b and r satisfy the conditions (5.5). We now consider three cases depending
on the size of r and |rα− b|.

Case 1: If r > xkρL−1, then wk(r)� (xkρL−1)−1/k. Hence T1(α)� y1−ρ+ε.
Case 2: If r ≤ xkρL−1 and |rα− b| > y−1x1−kx(k+1)ρL−1, then T1(α)� y1−ρ+ε.
Case 3: If r ≤ xkρL−1 and |rα− b| ≤ y−1x1−kx(k+1)ρL−1. We have

|ra− bq| = |r(a− qα) + q(rα− b)|

≤ xkρL−1
1

Q
+Qy−1x1−kx(k+1)ρL−1

≤ xk−1+kρ

y2k−1
+
y2k−2

x2k−2
x(k+1)ρL−1.

Since ρ < 1
k3

, by (5.2), we have |ra− bq| < 1, hence

a = b, q = r.

Then

T1(α)� wk(q)yx
ε

1 + yxk−1|α− a/q|
.

So we prove

T1 � y1−ρ+ε +
wk(q)yx

ε

1 + yxk−1|α− a/q|
.

�

Remark 4. Let

T ∗1 =
∑
m∼M

a(m)
∑
n∼N

x<mn≤x+y

e
(
(mn)kα

)
log n. (5.6)

Under the condition of Lemma 8 we have

T ∗1 � y1−ρ+ε +
wk(q)yx

ε

1 + yxk−1|α− a/q|
.

Remark 5. One can estimate the exponential sums∑
m1∼M1

∑
m2∼M2

a(m1,m2)
∑
n∼N

x<m1m2n≤x+y

e
(
(m1m2n)kα

)
with some suitable conditions on M1 and M2 as [4, Lemma 3.2] did, and then can give a
better result then Lemma 8. Since it has no influence on our main results, we will not do
it.

Utilizing Lemma 6 and Lemma 8, we can establish Proposition 2 via Heath-Brown’s
identity.
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Proof of Proposition 2. For k ≥ 4, take J = 2k − 1. Since σk = max
{

1
K
, 1
2k(k−2)

}
,

0 < % = ρ < 1
k3

and y ≥ x1−
1

2k−1
+ε, we have

x
1
J � min

{
y

(1−ρ)(k+1−2ρ)
1−2ρ x

−k
1−2ρ , yk+1−2ρx−k, x

1− k+1
k

ρ
σk , x

1
2k(k−2kρ−

1−2ρ
k+1−2ρ)

}
.

To estimate Sk(x, y;α), we now apply Lemma 3 with z = x
1
J . Then we get the desire

result by the same argument as the proof of Proposition 1. �
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